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Identification of forest fire-prone region in Lamington 
National Park using GIS-based multicriteria technique: 
validation using field and Sentinel-2-based observations
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aSchool of Science Technology and Engineering, University of the Sunshine Coast, Sippy Downs, 
QLD, Australia; bSmartSat Cooperative Research Centre, Adelaide, SA, Australia 

ABSTRACT 
Lamington National Park in Queensland, Australia, is increasingly 
threatened by wildfires, intensified by climate change. This study 
integrates remote sensing, GIS, and the Analytical Hierarchy 
Process (AHP) to identify fire-prone areas within the park. Eight 
parameters were analyzed, with major fuel type being the most 
significant. Multispectral satellite data provided essential insights 
into landscape changes and vegetation stress, enhancing the 
understanding of wildfire risks. Historical records, field observa
tions, and remote sensing data were utilized to develop and val
idate a Forest Fire Risk Index map, highlighting heightened fire 
susceptibility in the northern and eastern regions due to subtrop
ical humid conditions. The findings emphasise the importance of 
advanced spatial analysis for proactive wildfire management. 
Combining remote sensing with GIS and multicriteria decision- 
making equips conservationists and policymakers with critical 
tools to strengthen wildfire response strategies, safeguard vital 
ecosystems, and protect surrounding communities. This approach 
is valuable for managing similar landscapes globally.
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1. Introduction

Australian ecosystems are characterised by vast and diverse forested landscapes, encom
passing a rich tapestry of ecosystems that are crucial to the region’s ecological balance 
and overall well-being (DES 2020; Singh and Srivastava 2024). However, these ecosystems 
face significant challenges, ranging from natural catastrophic events to human-induced 
disturbances (Singh, Singh, et al. 2022; Kumar et al. 2024). In Queensland, wildfires are 
becoming more frequent and severe due to climate change, which leads to extended peri
ods of dryness, increasing wildfire likelihood and making them harder to control 
(Williams et al. 2017; Grantham et al. 2020). On the other hand, intensified rainfall events 

CONTACT Harikesh Singh Harikesh@research.usc.edu.au 
Supplemental data for this article can be accessed online at https://doi.org/10.1080/10106049.2025.2462484. 

� 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http:// 
creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any 
medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the 
Accepted Manuscript in a repository by the author(s) or with their consent.

GEOCARTO INTERNATIONAL 
2025, VOL. 40, NO. 1, 2462484 
https://doi.org/10.1080/10106049.2025.2462484

http://crossmark.crossref.org/dialog/?doi=10.1080/10106049.2025.2462484&domain=pdf&date_stamp=2025-02-08
https://doi.org/10.1080/10106049.2025.2462484
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://www.tandfonline.com


can cause flooding, further endangering communities and ecosystems (Russell-Smith et al. 
2003). Therefore, there is a pressing need for robust wildfire management strategies to 
mitigate these risks.

The constant threat of wildfires in Queensland highlights the importance of creating 
strong and proactive plans to evaluate the risk of wildfires and put in place successful 
management techniques. In this regard, Lamington National Park stands out as a signifi
cant area for examination and action due to its distinct mix of geography, climate, and 
ecology. Located in southeastern Queensland, this national park is famous for its rich var
iety of ecosystems and is also notable for being susceptible to forest fires, which can have 
significant consequences extending well beyond its boundaries (Hines et al. 2020; Ross 
et al. 2023).

To address the increasing risk of wildfires in this area, there’s a pressing requirement 
for sophisticated techniques and approaches that can precisely forecast and delineate areas 
susceptible to wildfires (Tehrany et al. 2019). These efforts are crucial for facilitating pro
active actions such as allocating resources, developing mitigation strategies, and protecting 
both human communities and natural habitats (Singh, Meraj, et al. 2022; Pandey et al. 
2023). In the context of big geospatial data analytics, Geographic Information Systems 
(GIS) play a pivotal role in processing, analysing, and visualising vast amounts of geospa
tial data to derive meaningful insights (Harikesh et al. 2020; Singh and Pandey 2021). GIS 
allows for the integration of various data sources, including satellite imagery, sensor data, 
and field observations, enabling researchers to gain a comprehensive understanding of 
environmental phenomena like wildfires, Air pollution (Singh, Meraj, et al. 2022). In 
essence, GIS serves as a fundamental component of big geospatial data analytics, enabling 
researchers to harness the power of large and diverse datasets to address complex envir
onmental challenges such as wildfire susceptibility (Sos et al. 2023).

Traditionally, wildfire susceptibility mapping relied on historical data, static land-use 
classifications, and rudimentary statistical models, a methodology constrained by its 
inability to capture the dynamism of susceptibility, especially in regions undergoing rapid 
environmental change (Weinstein and Woodbury 2010; Singh et al. 2024). As a result, the 
field of wildfire susceptibility mapping has undergone a profound transformation. In con
trast to data-extensive and high computation time modelling approaches, remote sensing 
(RS) and geospatial analysis have emerged as invaluable tools for assessing forest fire 
behaviour (Thompson et al. 2015; Çoban and Erdin 2020; Nuthammachot and Stratoulias 
2021; Quan et al. 2021; Singh, Singh, et al. 2022). These techniques offer a distinct advan
tage in terms of efficiency and reliability, even in remote locations characterised by harsh 
climatic conditions and vast areas affected by forest fires. Remote sensing technology 
offers distinct advantages in terms of spatial, spectral, radiometric, and temporal data 
availability compared to traditional techniques, making it a valuable tool for assessing for
est fires (Banskota et al. 2014; Singh, Singh, et al. 2022). With the introduction of 
advanced sensors, platforms, and implementation methods, it becomes increasingly effect
ive in evaluating the variability and extent of forest fires (Hua and Shao 2017). So 
far, numerous studies have been conducted to map forest fires in different countries, 
including but not limited to Australia (Srivastava et al. 2013, 2021; Parker et al. 2015; 
Eliott et al. 2020; Singh, Singh, et al. 2022; Penglase et al. 2023; Ross et al. 2023), Canada 
(Xiao-rui et al. 2005; Hall et al. 2020; Woolford et al. 2021; Risk and James 2022), the 
United States (Akinola and Adegoke 2019; Mohajane et al. 2021; Moris et al. 2022; 
Truong et al. 2023), Brazil (Mota et al. 2019; Ziccardi et al. 2020; Santana Neto et al. 
2023), Russia (Shikhov et al. 2019; Glushkov et al. 2021; Li et al. 2022), and several 
European nations (Varela et al. 2019; Efthimiou et al. 2020; M€uller et al. 2020). 
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Multicriteria Decision-Making (MCDM) methods like Analytical Hierarchy Process 
(AHP) (Kumari and Pandey 2020; Lamat et al. 2021; Nasiri et al. 2022; Sivrikaya and 
K€uç€uk 2022), Fuzzy AHP (Eskandari 2017; G€ung€oro�glu 2017; Roshani et al. 2023), 
Analytical Network Process (Hung 2011; Abedi Gheshlaghi et al. 2020), Ordered 
Weighted Averaging (Valente and Vettorazzi 2008; Xiao et al. 2017; Faramarzi et al. 
2021), VIKOR (Sari 2021; Ma et al. 2022; Saner et al. 2022; Biswas et al. 2023), and 
Technique for the Order of Preference by Similarity to Ideal Solution (TOPSIS) (Sari 
2021; Abedi 2022; Ju et al. 2022; Ma et al. 2022; Biswas et al. 2023) have emerged as vital 
tools. Statistical models, including logistic regression (Milanovi�c et al. 2020), evidential 
belief functions (Pourghasemi 2016; Nami et al. 2018), and the frequency ratio method 
(Arca et al. 2020; de Santana et al. 2021), have been used to generate these crucial maps. 
Yet, the most transformative leap has been the adoption of machine learning (ML) and 
deep learning-based algorithms for forest fire susceptibility mapping (Kalantar et al. 2020; 
Achu et al. 2021; Mohajane et al. 2021; Shahfahad et al. 2022; Akıncı and Akıncı 2023; 
Rihan et al. 2023).

The morphometric factors of the landscape play a fundamental role in mapping forest 
fire-prone areas (Bajocco et al. 2010). To successfully identify potential forest fire risks 
within a region, it’s imperative to understand all the environmental processes at play. 
Static physical characteristics such as vegetation type, topography, vegetation density, and 
drainage, along with dynamic properties like real-time moisture levels, collectively indicate 
the potential for forest fires resulting from factors like prolonged drought and lightning 
strikes. The considered variables related to topography, vegetation type, wetness index 
and the prevailing moisture conditions in the study area, directly influence the susceptibil
ity of an area to forest fires. Moreover, the terrain’s topographical features, particularly 
the digital elevation model (DEM), are of utmost importance for forest fire mapping. 
These factors enable the extraction of slope, aspect, and wetness characteristics, with the 
scale and precision of these topographic data directly impacting the accuracy of forest fire 
susceptibility analyses.

The factors contributing to forest fires require a multi-criteria decision-making 
approach within a GIS framework. One of the techniques for evaluating the relative sig
nificance of these factors is the Analytical Hierarchy Process (AHP), introduced by Saaty 
(1980). AHP employs a multi-level hierarchical structure involving criteria, sub-criteria, 
objectives, and alternatives to address intricate decision-making problems and has found 
application in various domains. Triantaphyllou and Mann (1995) highlighted the signifi
cance of AHP in numerous engineering contexts. Tiwari et al. (2021) utilised AHP to 
assess potential zones prone to forest fires in the Pauri Garhwal region, India. Unver and 
Ergenc (2021) applied AHP to prioritise forest logging activities, while Feng et al. (2016) 
integrated AHP for assessing forest resource quality at a regional scale.

Comparatively, fuzzy logic modelling has emerged as an alternative for handling uncer
tainty and imprecise input data in multi-criteria decision-making. Feizizadeh et al. (2014) 
demonstrated the effectiveness of fuzzy logic in wildfire risk mapping, particularly in 
regions with high variability in data accuracy. Similarly, Pourghasemi et al. (2012) applied 
fuzzy-AHP techniques to landslide susceptibility mapping, showcasing its flexibility in 
addressing data uncertainties. While fuzzy logic excels in managing uncertainties, AHP 
remains advantageous for its transparency, simplicity, and effective integration with GIS 
frameworks. These studies collectively demonstrate the versatility and applicability of 
AHP and provide a basis for selecting AHP in this study, given the reliable datasets and 
well-defined criteria specific to Lamington National Park.
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Forest fires are a recurring disaster in Lamington National Park, Queensland, 
Australia, often transpiring annually and exacerbated by the country’s seasonal environ
ment (Lowe et al. 2016; Abram et al. 2021). These fires are typically ignited by extensive 
surface area over short durations and on small spatial scales, coupled with factors like fuel 
load, climate change, non-native species, forest management practices like fuel accumula
tion, and economic development, all of which contribute to the increasing vulnerability to 
fire-related hazards. Table 1 presents a record of recent forest fire incidents in Lamington 
National Park, Queensland, Australia.

This study uniquely integrates Sentinel-2 remote sensing indices, such as the Enhanced 
Vegetation Index (EVI) and Topographic Wetness Index (TWI), with field validation to 
produce a highly accurate fire susceptibility map. Unlike previous studies that rely solely on 
AHP or machine learning models, this research emphasises the unique characteristics of 
subtropical ecosystems, which are underrepresented in wildfire susceptibility literature. 
Specifically, the integration of historical fire data with advanced geospatial analysis targeting 
Lamington National Park—a biodiverse and ecologically sensitive region—addresses a criti
cal gap in applying remote sensing and GIS-based methods in subtropical environments. 
Additionally, this approach provides a scalable and interpretable framework for wildfire 
risk assessment, offering actionable insights for conservation efforts and wildfire manage
ment. By combining the interpretability of AHP with the spatial precision of Sentinel-2 
indices, this study achieves a balance between methodological rigour and practical applica
tion, setting a new benchmark for fire susceptibility mapping in subtropical regions.

Table 1 summarises the key annual statistics of burned area and fire frequency within 
the study region during the analysis period (2012–2020). This concise version focuses on 
essential information to provide a clear overview of temporal trends in wildfire activity. 
The data highlights variations in annual burned areas and the frequency of fire occur
rences, which serve as critical inputs for forest fire susceptibility modelling.

For a comprehensive breakdown of the detailed annual and spatial trends, including spe
cific regions affected by wildfires, please refer to the supplementary material (Table S1).

2. Study area and data sets

The study area for this research is Lamington National Park, a biodiverse sanctuary nestled 
in the southeastern region of Queensland, Australia (Figure 1). Covering approximately 
20,590 hectares, Lamington National Park is renowned for its rich ecosystems, housing a 
diverse array of flora and fauna species. Designated as a UNESCO World Heritage-listed 
site, the park features subtropical rainforests, eucalypt woodlands, and diverse vegetation 
types, making it a critical region for biodiversity conservation. However, the park faces esca
lating threats from wildfires, exacerbated by climate change-induced environmental shifts.

Table 1. Summary of annual wildfire activity in the study area (2012–2020), 
including total burned area and fire frequency, serving as key inputs for forest 
fire susceptibility modelling.

Year Annual fire frequency Total annual burned area (ha)

2012 1 262.61
2013 2 627.26
2015 2 753.30
2016 3 236.95
2018 2 1837.76
2019 7 5544.601
2021 1 110.96
Total 18 9373.44

Detailed data are available in Supplementary Table S1.
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The park experiences a subtropical climate characterised by warm, humid summers 
and mild, dry winters. Annual rainfall ranges between 1,500 mm and 2,000 mm, with the 
majority of precipitation occurring between November and March. This seasonal variation 
significantly influences vegetation moisture levels, contributing to varying degrees of fire 
susceptibility. Prolonged dry periods and elevated temperatures during summer months 
increase the likelihood of fire ignition and spread.

Fire history data reveal that the park has experienced several significant wildfire events 
in the past decade. Notably, the 2019 wildfire season affected over 6,000 hectares, severely 
impacting vegetation and wildlife. These fires highlight the critical role of climatic factors, 
such as drought and heatwaves, as well as the importance of understanding topographic 
influences, including steep slopes and rugged terrain, which exacerbate fire behaviour and 
pose challenges for firefighting efforts.

To address these challenges, this study employs a robust methodology integrating 
Geographic Information Systems (GIS) and multicriteria decision-making techniques. 
Various datasets were utilized, including a Digital Elevation Model (DEM) with a 5-meter 
resolution, Sentinel-2 imagery for Enhanced Vegetation Index (EVI) and Topographic 
Wetness Index (TWI) derivation, as well as road, stream, and forest history data sourced 
from government organizations (Table 2). These datasets were analyzed to assess terrain 
characteristics, vegetation health, and proximity to water bodies and roads, which are key 
parameters influencing forest fire susceptibility. This research focuses on understanding 
fire risk dynamics within Lamington National Park to enhance conservation efforts and 
mitigate wildfire impacts effectively.

Figure 1. Study area provides a comprehensive overview of the geographical features pertinent to our research. The 
background image is derived from Sentinel-2 satellite imagery, which vividly displays the actual landscape and charac
teristics of the study area. This high-resolution image aids in accurately visualising the region, highlighting key ele
ments such as vegetation, water bodies, and terrain variations.
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3. Method

Through the application of the Analytical Hierarchy Process (AHP), this study aimed to 
identify forest fire-prone regions within Lamington National Park and generate a compre
hensive Forest Fire Risk Index (FRI) map. Validation of the FRI map was conducted 
using field observations and satellite imagery, underscoring the critical role of advanced 
spatial analytics in bolstering wildfire management strategies and safeguarding vital eco
systems and communities.

The workflow of the present work is shown in Figure 1. The methodology part is div
ided into 3 sections. At first, different parameters were selected based on case studies with 
similar characteristics (Feng et al. 2016; Eskandari 2017; Blagojevic et al. 2020; Çoban and 
Erdin 2020; Nasiri et al. 2022). Fire risk index (FRI) map was generated by implementing 
AHP on these parameters in a GIS environment. Then, forest fire-prone areas were iden
tified by integrating FFDI and lastly produced results were validated using forest fire 
report data which was managed by the Queensland government, literature and remote 
sensing-based index.

Table 2. Various datasets used in the study.

Data
Resampled 
resolution

Temporal 
resolution

Radiometric 
resolution

Initial  
data format

Data source and map 
scale

Digital elevation 
model (DEM)

5 m Static Raster Geoscience Australia, 
LiDAR-derived 5 m DEM

Sentinel 2 10 m 5-day revisit 12-bit Raster European Space 
Agency (ESA)

Aspect 5 m – – Raster Derived from 5 m DEM
Slope 5 m – – Ratser Derived from 5 m DEM
Topographic 

wetness 
type (TWI)

5 m – – Raster Derived from 5 m DEM

Enhanced 
vegetative 
index (EVI)

5 m – – Raster Sentinel 2 Imagery (Date: 
29/07/2023) with 10 m 
resolution

Regional ecosystem 
data

5 m Static Annual Raster Queensland Department 
of Environment, 
Science and Innovation, 
Brisbane (map scale: 1: 
1 million)

Road 5 m Static – Vector Derived from Roads and 
Tracks data available 
with the Department of 
Resources (map-scale 
of 1:200 K)

Stream 5 m Static – Vector Derived from drainage 
network data available 
with the Department of 
Resources (map scale 1: 
100 000)

Forest fire history 
data

– Annual – Vector Queensland Parks and 
Wildlife Service (2 m 
accuracy) (The data 
was utilised as point 
locations and 
incorporated into 
training and testing 
datasets.)
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3.1. Forest fire risk index generation

A forest fire risk index is a statistical tool designed to depict the magnitude and location 
of areas at risk of forest fire hazards. It provides insights into the potential severity and 
spatial distribution of fire-prone areas, aiding in the prioritization of wildfire management 
strategies to protect life, health, and property. Numerous studies have utilised the Forest 
Fire Index-based approach to prepare a forest fire map (Kumari and Pandey 2020; Lamat 
et al. 2021; Sivrikaya and K€uç€uk 2022).

The 9 factors that have a significant influence in mapping fire risk index were identi
fied. The selected factors are Surface slope (S), Aspect (A), Elevation (E), Enhanced vege
tation index (EVI), Topographic wetness index (TWI), Major fuel type (MFT), Distance 
to road (DR), Distance to stream (DS) and Distance to camping site (CS). The AHP 
model was implemented to estimate the normalised weight (W) of each parameter.

Later, each parameter was classified to five hazard levels defined by its rating score 
ranging between 2 (for minimum influence) and 10 (for maximum influence). Finally, the 
fire risk index was calculated using Equation 1.

FRI ¼
Xn

i¼1
Wi�p ¼ ðMFT�W1Þ þ ðA�W2Þ þ ðS�W3Þ þ ðE�W4Þ þ ðTWI�W5Þ

þ ðDR�W6Þ þ ðDS�W7Þ þ ðEVI�W8Þ þ ðCS�W9Þ

where n¼ number of parameters, Wi ¼ weight of each parameter, p¼ parameter used 
(in terms of rating score).

3.2. Fuel types and fire behaviour potential

Fuel types play a critical role in determining forest fire susceptibility due to variations in 
their structure, fuel load, and flammability. This study evaluated 14 distinct fuel types 
based on their fire behaviour potential, which was derived through expert consultation, 
literature review, and historical fire data. The fire behaviour potential of each fuel type 
was quantified and weighted using the Analytical Hierarchy Process (AHP). Table 3
presents the 14 fuel types, their respective characteristics, and the assigned weights based 
on their influence on fire spread and ignition potential.

The weights derived from Table 3 were integrated into the forest fire susceptibility 
model along with other factors, such as slope, aspect, and TWI. The methodology ensured 
consistency in the weighting process by adhering to the AHP framework and validating 
the pairwise comparison matrix (CR < 0.1).

3.3. Analytical hierarchy process

The Analytic Hierarchy Process (AHP) offers an effective approach for addressing intri
cate multi-criteria decision challenges. It involves breaking down the problem into a hier
archical structure of smaller sub-problems, making them more manageable and allowing 
for subjective evaluations (Saaty 1980).

The Analytical Hierarchy Process (AHP) was chosen for this study due to its capacity 
to effectively handle multi-criteria decision-making problems in geospatial contexts. Its 
interpretability and flexibility allow for the integration of diverse environmental factors, 
such as vegetation indices and terrain parameters, with field-validated data. AHP remains 
a robust and widely accepted technique for wildfire susceptibility mapping, particularly in 
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scenarios requiring practical, scalable solutions in complex ecological landscapes like 
Lamington National Park.

Numerous studies have demonstrated the effectiveness of AHP in wildfire susceptibility 
and hazard mapping. Tiwari et al. (2021) utilised AHP to map forest fire-prone zones in 
the Pauri Garhwal region of India, effectively identifying high-risk areas based on multi- 
criteria evaluation. Similarly, Sivrikaya and K€uç€uk (2022) applied AHP to prioritize forest 
management activities in Turkey, showcasing its adaptability for multi-criteria problems 
and its ability to incorporate diverse datasets such as proximity to roads and vegetation 
health. Çoban et al. (2019) integrated AHP with GIS to produce wildfire hazard maps in 
Turkey, highlighting its simplicity and interpretability in weighting parameters like slope 
and vegetation density. Kumari and Pandey (2020) further employed AHP to assess wild
fire risks in the Palamau Tiger Reserve in India, demonstrating its reliability in identifying 
vulnerable areas for targeted wildfire management.

These references validate the utility of AHP as a proven method for forest fire hazard 
estimation, especially when combined with GIS technologies. By adopting AHP, this study 
builds upon its established methodologies and extends its application to subtropical eco
systems. The integration of advanced datasets, such as Sentinel-2-derived indices and field 
validation data, adds further value to this research, providing a novel approach to under
standing fire susceptibility in Lamington National Park.

In this research, evaluated the potential significance of various factors related to forest 
fire susceptibility by assigning scale values ranging from 1 to 9 within a decision matrix. 
This 9-point scale specifically assesses the non-diagonal relationships among the consid
ered parameters. A value of 1 indicates ‘Equal importance’, 3 signifies ‘Moderate impor
tance’, 5 represents ‘Significant importance’, 7 implies ‘Very important’ and 9 corresponds 
to ‘Absolutely important’. To derive normalised weights (W), we conducted pair-wise 
comparisons for each factor, as illustrated in Tables 3 and 4 using a 9� 9 matrix shown 
in Tables 3 and 4.

The Major fuel type and aspect were the factors having the highest normalised weight 
(28.875 and 18.239), least weight was observed for distance to camping site (2.959).

Table 3. Classification of major fuel types in Lamington National Park, categorised by broad vegetation group (BVG) 
codes.

BVG code Broad vegetation group description Fuel type

11a Moist to dry open forests to woodlands dominated by Eucalyptus orgadophila Eucalypt
2a Complex evergreen mesophyll-notophyll vine forest frequently with Araucaria 

cunninghamii
Rainforest

6a Notophyll vine forest and microphyll fern forest to thicket on high peaks and plateaus of 
southern Queensland.

Rainforest

8a Wet tall open forest dominated by species such as Eucalyptus grandis Eucalypt
8b Moist open forests to tall open forests mostly dominated by Eucalyptus pilularis Eucalypt
13c Woodlands of Eucalyptus crebra Eucalypt
16c Woodlands and open woodlands dominated by Eucalyptus coolabah Eucalypt
29b Open shrublands to open heaths on elevated rocky substrates. Heath
5a Araucarian notophyll/microphyll and microphyll vine forests of southern coastal 

bioregions.
Rainforest

9h Dry woodlands dominated by species such as Eucalyptus acmenoides Eucalypt
4b Evergreen to semi-deciduous mesophyll to notophyll vine forest, frequently with 

Archontophoenix spp.
Rainforest

10b Moist open forests to woodlands dominated by Corymbia citriodora Eucalypt
28e Low open forest to woodlands dominated by Lophostemon suaveolens Eucalypt
9a Moist eucalypt open forests to woodlands dominated by a variety of species including 

Eucalyptus siderophloia
Eucalypt

Each BVG description highlights the predominant vegetation type and corresponding fuel type, providing insights 
into the varying fire behaviours and susceptibilities across the park’s diverse ecosystems.
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Table 4. Classification of the parameters and their rating score.

Parameters Class Reclassified class Rating Weights

Fuel type 11a 1 8 32.65
2a 2 3
6a 3 3
8a 4 7
8b 5 7
13c 6 9
16c 7 8
29b 8 6
5a 9 3
9h 10 9
4b 11 4

10b 12 8
28e 13 7
9a 14 8

Aspect North 2 19.04
North East 3
North West 3

East 4
Flat 5

South East 6
West 6
South 8

South West 10
Slope (degree) 0–84 0–5 2 12.93

05–10 3
10–15 4
15–20 5
20–25 6
25–30 7
30–35 8
35–40 9
> 45 10

Elevation (m) 149.118–1189.77 0 2 8.67
100 3
200 4
300 5
400 6
500 7
600 8
700 9
>700 10

TWI −0.52–21.66 −0.52 2 7.14
0 3
2 4
4 5
6 6
8 7

10 8
15 9
>15 10

Distance to road (m) 0–3703.04 > 1000 2 6.19
1000 3
800 4
600 5
400 6
200 7
150 8
100 9
50 10

(continued)
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3.3.1. Consistency check
The consistency of the created decision matrix (Section 3.2) was evaluated using the 
following index:

CR ¼
CI
RI 

where CR is the consistency ratio; CI is the consistency index; RI is the random index.
The acceptable CR must be <0.1. The values of RI are tabulated in Table 5 (Lane and 

Verdini 1989; Alonso and Lamata 2006). The RI value depends upon the number of fac
tors (n) used in the AHP. Thus, for 9 factors, RI comes out to be 1.45.

CI is calculated using the equation:

CI ¼
kmax − n

n − 1 

where kmax is the maximum eigenvalue of the comparison matrix, and n is the number of 
factors.

After analysing Table S2, the value of kmax comes out to be 9.69 and CI is computed 
to be 0.09. Eventually, using the CR equation, the calculated Consistency ratio is 0.06; this 
proves that the weights are consistent.

Table 4. Continued.

Parameters Class Reclassified class Rating Weights

Distance to stream (m) 0–2263.02 50 2 5.84
100 3
150 4
200 5
250 6
500 7

1000 8
2000 9
> 2000 10

EVI 0.15–1 0.15 10 4.61
0.2 9
0.3 8

0.35 7
0.4 6

0.45 5
0.5 4
0.7 3
> 0.7 2

Distance from Campsite 0–4563 0–100 1 2.93
100–200 2
200–300 3
300–400 4
400–500 5

500–1000 6
1000–2000 7
2000–4000 8
4000–max 9

Table 5. Distribution of the forest fire risk zone.

Fire risk zone Percentage (%)

Low risk 66.3
Moderate risk 29.36
High 4.32
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After assessing the consistency of decision matrix, all parameters were reclassified into 
5 hazard levels viz. very high, high, moderate, low and very low (more details are in 
Section 4). The rating score was given for each risk level (Table 4) ranging between 2 
and 10.

3.4. Forest fire-prone areas mapping and validation

The FRI map obtained by implementing the AHP model was masked for the identifica
tion of affected forest areas. The masking was carried out by taking the burned areas 
within the forest boundary. The masked-out layers were then validated using reported 
locations of forest fire obtained from the forest fire history report, which was managed by 
the Queensland government.

4. Result and discussion

4.1. Factors influencing forest fire

4.1.1. Major fuel distribution
The composition and distribution of major fuel types are crucial determinants of wildfire 
dynamics, directly influencing ignition potential, fire intensity, and spread patterns. 
Understanding these fuel types and their characteristics is essential for effective fire man
agement and mitigation strategies (Moor 2019). In Lamington National Park, the diversity 
of ecosystems is reflected in the variety of fuel types present, each contributing differently 
to fire behaviour. These ecosystems include rainforests, eucalypt forests, and heathlands, 
each with unique fuel structures and flammability characteristics (Table 3).

Rainforests in Lamington National Park, such as the complex evergreen mesophyll- 
notophyll vine forests, possess a distinct fire dynamic due to their typically high moisture 
levels and dense, multi-layered canopies (Ahmad et al. 2022; QFBC and Health Land and 
Water 2024). These conditions generally result in lower surface fuel loads and reduced 
fire spread potential. However, during prolonged dry spells, even rainforests can become 
vulnerable to ground fires, which can smoulder in the thick organic layers on the forest 
floor (Goldammer and Center 2017). The presence of species such as Araucaria cunning
hamii and various vine forests further influences the fire behaviour in these ecosystems, 
contributing to generally lower flammability compared to other vegetation types (Zimmer 
et al. 2016; Potts et al. 2022).

Eucalypt forests, although less prevalent in Lamington National Park compared to rain
forests, are still significant. These areas are characterised by their tall, often dense stands 
of eucalyptus trees (Tang et al. 2003). The fuel load in these forests varies but generally 
includes a significant amount of leaf litter, bark, and woody debris. These fuels can be 
highly combustible, especially during dry periods, making eucalypt forests susceptible to 
intense surface fires and canopy fires (Bradstock et al. 2012). Specific eucalypt-dominated 
areas in the park, such as those with Eucalyptus orgadophila and Eucalyptus grandis, 
exhibit varying levels of fire susceptibility based on the moisture content and structure of 
the vegetation (Eyre 2006).

Heathlands, characterised by low open shrublands to open heaths on elevated rocky 
substrates, are highly flammable due to their fine, dry fuels such as grasses and small 
shrubs (Minsavage-Davis et al. 2024; Singh et al. 2024). These areas can facilitate rapid 
fire spread, especially under windy conditions. The open shrublands in Lamington 
National Park, particularly those on rocky substrates, are noted for their high 
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susceptibility to fires that can quickly engulf large areas (Del Moral and Walker 2007). 
The specific composition and distribution of these shrublands contribute significantly to 
the overall fire risk in the park.

Woodlands in the national park, including those dominated by species such as 
Eucalyptus crebra and Eucalyptus coolabah, display variable fire behaviours influenced by 
factors such as understory composition and weather conditions (Modarres et al. 2024). 
The open canopy and grassy understory often found in these woodlands can lead to sig
nificant surface fires during dry seasons (Bradstock et al. 2012). The variability in fire sus
ceptibility necessitates adaptable fire management strategies tailored to specific woodland 
types (Sample et al. 2022). These woodlands, although not as extensive as the rainforests, 
still play a crucial role in the park’s overall fire dynamics.

By comprehensively understanding the major fuel types and their fire behaviours, fire 
management practices can be more effectively tailored to mitigate fire risks and enhance 
the resilience of diverse ecosystems within Lamington National Park (Clarke et al. 2011; 
Bradstock et al. 2012; Singh et al. 2024; Singh and Srivastava 2024).

4.1.2. Aspect
Aspect, the compass direction a slope faces, is a critical factor influencing forest fires in 
Lamington National Park, Queensland, Australia. Understanding the relationship between 
aspect and fire susceptibility is vital in assessing and mitigating fire risks within this eco
logically diverse region (Cruz et al. 2008; Sharples 2009).

Lamington National Park’s topography and aspect play a significant role in fire behav
iour. In this area, a notable pattern emerges: the north-eastern and eastern aspects tend to 
be more fire-prone. These aspects receive the most direct sunlight and are typically drier, 
contributing to increased flammability of vegetation, particularly during dry seasons 
(Rothermel 1972).

The north-eastern and eastern slopes, due to their orientation, often experience more 
prolonged sun exposure, resulting in reduced moisture levels in the soil and vegetation. 
This, in turn, creates conditions conducive to the ignition and rapid spread of fires 
(Sharples et al. 2010). The combined factors of aspect, climate, and vegetation type in 
these areas make them more susceptible to forest fires.

Fire management strategies in Lamington National Park must consider the elevated 
risk associated with north-eastern and eastern aspects. These regions may require 
increased vigilance, fuel reduction efforts, and targeted fire prevention measures to min
imise the impact of wildfires.

The map of aspects in the study area, showing the maximum fire-prone areas in the 
north-east and east, highlights the importance of recognising these vulnerable zones and 
tailoring fire management practices accordingly. By understanding the intricate relation
ship between aspect and forest fire susceptibility, authorities can better protect both the 
natural ecosystem and local communities in Lamington National Park.

4.1.3. Slope
Slope is a critical terrain feature that significantly influences the behaviour and spread of for
est fires in Lamington National Park, Queensland, Australia. Understanding the implications 
of slope on fire risk is fundamental in developing effective fire management strategies within 
this ecologically diverse region (Rothermel 1972; Sharples et al. 2010).

The topography of Lamington National Park includes various slopes, which can range 
from gentle to steep gradients. Slope affects forest fires in several keyways:
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1. Fire Spread: Steeper slopes can facilitate the rapid spread of fires (Sharples 2009). As 
fires burn uphill, they gain momentum due to preheating of fuels and increased fire
line intensity (Ren et al. 2022). This can lead to more challenging firefighting efforts 
and pose greater risks to both the environment and nearby communities.

2. Wind Patterns: Slope can influence local wind patterns. Air tends to rise along 
upslopes, creating conditions that can accelerate fire spread. It’s essential to consider 
how wind interacts with the terrain, especially on steep slopes, when assessing fire 
behaviour (Pimont et al. 2012).

3. Fuel Availability: Sloped terrain can affect the distribution of fuels. On uphill slopes, 
fine fuels and dead vegetation may accumulate, providing additional flammable 
material for fires (Innocent 2022). This accumulation of fuel can intensify the fire’s 
impact (Bradstock et al. 2012).

The map displaying slope values in the study area, with a maximum value of approxi
mately 84 degrees, signifies areas with steep gradients. These areas are more prone to 
intense fires, particularly during dry and windy conditions. The recognition of high-slope 
regions is paramount for prioritising fire prevention and suppression measures.

Fire management strategies in Lamington National Park should consider the influence 
of slope on fire behaviour and the increased risk associated with steeper terrain. Effective 
measures may include controlled burns, fuel reduction programs, and strategic planning 
for fire response on slopes. By accounting for the complexities of slope in fire manage
ment, authorities can better protect the park’s diverse ecosystem and surrounding com
munities from the threat of forest fires.

4.1.4. Elevation
Elevation, the measurement of height above sea level, is a pivotal geographic feature that 
significantly influences forest fires in Lamington National Park, Queensland, Australia. 
Understanding how elevation impacts fire dynamics is crucial for effective fire risk assess
ment and management in this ecologically diverse region (Dillon et al. 2011). Scientific 
knowledge reveals that elevation affects temperature, fuel moisture, and, subsequently, fire 
behaviour (Lutz et al. 2010; Vanoni et al. 2016). The map displaying elevation values in 
the study area, with a maximum value of approximately 1189 meters, indicates regions 
with significant changes in altitude. While higher elevations may be less fire-prone due to 
cooler and moister conditions, it’s important to account for the full spectrum of factors 
affecting fire behaviour in different elevation zones (Holden et al. 2009). This knowledge 
is crucial for developing well-informed fire management and prevention strategies that 
protect the park’s unique ecosystem and neighbouring communities.

4.1.4.1. Topographic wetness index (TWI). The Topographic Wetness Index (TWI) is a 
fundamental terrain parameter that holds significant importance in understanding and man
aging forest fires within the diverse landscape of Lamington National Park, Queensland, 
Australia. This index serves as a critical tool for assessing the wetness or dryness of different 
areas within the park, thereby aiding in the evaluation of fire risk (Moore et al. 1991; 
Sørensen et al. 2006). Scientific knowledge reveals that TWI is used to assess wetness levels 
in various park regions, impacting fuel moisture and, consequently, fire behaviour (Beven 
and Kirkby 1979; Sørensen et al. 2006). The map displaying TWI values in the study area, 
with values ranging from −0.52 to 21.66, indicates regions with varying degrees of wetness. 
Effective fire management strategies in Lamington National Park should consider the 
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insights provided by TWI, using this information to develop targeted fire prevention and 
response measures to safeguard the park’s unique ecosystem and local communities.

4.1.5. Distance to road
The scientific importance of estimating distance to roads for forest fire susceptibility map
ping cannot be overstated (Syphard et al. 2009). Roads serve as conduits for human activ
ity, which is a significant driver of forest fires worldwide. By accurately quantifying the 
proximity of forested areas to roads, researchers can better understand the spatiotemporal 
patterns of fire ignition and spread (Syphard et al. 2011). This information is critical for 
developing predictive models that identify high-risk areas and prioritise resource alloca
tion for fire prevention and suppression efforts. Additionally, incorporating distance to 
roads into susceptibility mapping enables a more comprehensive assessment of the 
human-environment interface, accounting for factors such as land use, accessibility, and 
infrastructure development, which influence fire dynamics (Syphard et al. 2009).

Furthermore, distance to roads provides valuable insights into the underlying mecha
nisms linking human activities to fire occurrence. Beyond serving as potential ignition 
sources, roads can affect fire behaviour by acting as barriers or conduits for fire spread 
(Boer et al. 2008). Understanding how road networks influence fire dynamics allows for 
the development of more nuanced fire management strategies, including targeted land-use 
planning, zoning regulations, and road maintenance practices (Gannon et al. 2023). 
Moreover, by integrating distance to roads with other environmental variables, such as 
vegetation type, topography, and weather conditions, researchers can enhance the accur
acy and reliability of forest fire susceptibility models, thereby aiding in proactive decision- 
making and risk mitigation efforts.

4.1.6. Distance to stream
The scientific significance of estimating the distance to streams for forest fire susceptibility 
mapping is paramount due to the critical role streams play in shaping fire dynamics within 
ecosystems. Streams act as natural barriers that can impede the spread of fires by creating 
firebreaks, limiting the availability of combustible materials, and altering local microclimates 
to reduce the flammability of surrounding vegetation (Dwire and Kauffman 2003; Pettit and 
Naiman 2007). Accurately assessing the proximity of forested areas to streams provides valu
able insights into how the spatial distribution of water bodies influences fire ignition, propa
gation, and suppression efforts, aiding in the development of predictive models to identify 
high-risk zones and prioritise fire management strategies effectively.

Integrating distance to streams into forest fire susceptibility mapping enhances our 
understanding of the intricate interactions between landscape features and fire behaviour. 
By considering how streams influence fire dynamics alongside other environmental varia
bles such as vegetation types, topography, and weather conditions, researchers can refine 
susceptibility models to provide more accurate assessments of fire risk (Dwire and 
Kauffman 2003; Cary et al. 2006). This comprehensive approach enables stakeholders to 
make informed decisions regarding land management practices, resource allocation for 
fire prevention and suppression, and the implementation of mitigation measures to reduce 
the impact of forest fires on ecosystems and communities.

4.1.7. Enhanced vegetation index (EVI)
The Enhanced Vegetation Index (EVI) holds significant scientific importance for forest 
fire susceptibility mapping due to its ability to quantify vegetation density and health, 
which are critical factors influencing fire behaviour. EVI measures the density and health 
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of vegetation cover by accounting for factors such as canopy structure, chlorophyll con
tent, and soil background (Huete et al. 2002). Areas with dense, healthy vegetation are 
typically less susceptible to fire ignition and spread, while sparse or stressed vegetation 
increases fire risk (Chuvieco et al. 2010). By incorporating EVI data into susceptibility 
mapping, researchers can accurately assess the spatial distribution of vegetation density 
and identify areas with heightened fire susceptibility (Huete et al. 2002). This information 
enables the development of proactive fire management strategies, including targeted fuel 
reduction efforts, land-use planning, and allocation of firefighting resources.

Below is a map illustrating EVI values ranging from 0.2 to 1, derived from Sentinel-2 
data, where higher values indicate denser and healthier vegetation cover (Figure 3). By over
laying this EVI map with other spatial data layers such as topography, weather patterns, and 
human activities, researchers can generate comprehensive forest fire susceptibility maps that 
facilitate informed decision-making and effective wildfire management strategies (Jin and 
Sader 2005).

4.2. Forest fire hazard index using a multi-criteria technique

The Forest Fire Risk Index (Figure 2) was predominantly influenced by the type of major 
fuel type and aspect, as they were assigned significant weights during the Analytic Hierarchy 
Process (AHP). Utilising the Natural Break method, the spatial distribution of the computed 
forest fire hazard raster was classified into five distinct risk levels: very low, low, moderate, 
high, and very high. Analysis reveals that approximately 4.32% and 29.36% of the total area 
are encompassed by zones classified as very high and high risk, respectively, indicating 
notable areas of heightened fire risk within the study area.

4.3. Identification of fire-affected forest areas

The forest fire risk map was generated utilising geospatial technology alongside the 
Analytic Hierarchy Process (AHP) methodology. Following the determination of final 
weights for all parameters, the map was converted into raster format and aggregated using 
a raster calculator within the ArcGIS software platform to delineate zones of potential for
est fire risk. To refine the resulting fire zones map and minimise pixel speckling, a major
ity filter was applied using ArcGIS. The analysis revealed that 4.32% of the area fell 
within the ‘high’ fire susceptibility risk zone, followed by 29.36% categorised as moderate 
risk, and 66.3% as low risk (Table 6).

The analysis revealed a conspicuous concentration of potential forest fire-prone zones, 
notably clustered in the eastern and south-eastern aspects of the region. Furthermore, 
areas with high susceptibility to fires were predominantly situated within the lower eleva
tion regions characterised by gentle slopes, particularly prominent in the southern and 
northern expanse of the study area. This spatial distribution underscores the heightened 
risk of fire ignition and spreads in regions exhibiting specific aspects and topographical 
features targeted attention and proactive mitigation measures to safeguard against poten
tial forest fire hazards (Figure 2).

4.4. Validation

The validation of the forest fire risk zone was verified by the fire points of Forest fire his
tory data, which database was created by the Queensland government from the year 1982 
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to 2018. The fire was very prone in low to moderate elevation ranges, and most of the 
fire points overlaid in the map were seen as very high and high-risk zones.

In the validation phase of our research article titled ‘Identification of forest fire-prone 
regions in Lamington National Park using GIS-based multicriteria technique: validation 
using field and satellite observations’, we employed a rigorous methodology to assess the 
accuracy and reliability of the forest fire-prone regions identified within the park. Three 
key figures were generated to validate the GIS-based multicriteria technique utilised in 
delineating fire-prone areas.

The Time since last burns (monthly) Map (Figure 3), offering a comprehensive tem
poral analysis of fire occurrence and frequency across the landscape. This figure provides 
critical insights into the temporal dynamics of fire events, aiding in fire management 
strategies and ecological monitoring efforts within the study area. The visualisation of fire 
frequency over time enhances our understanding of fire regimes and their implications 
for ecosystem dynamics, thus contributing to the broader scientific understanding of fire 
ecology.

The Burned Area Map (Figure 4), visually depicts the extent and distribution of areas 
affected by past fires within Lamington National Park. This map highlights the spatial 
footprint of historical fire events, facilitating the identification of fire-prone zones and 
informing future fire management planning. The delineation of burned areas serves as a 
valuable tool for assessing fire risk and guiding efforts to mitigate the impact of wildfires 
on the park’s biodiversity and ecological processes.

Figure 2. Flowchart adopted to generate forest fire risk zone map (inputs, outputs and process); Wi, the weight of 
each factor.
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Overlays fire history points onto the final forest fire risk index zone map, demonstrat
ing the spatial correspondence between historical fire events and identified fire-prone 
zones. Notably, a significant proportion of the fire history points coincide with areas clas
sified as high-risk zones, affirming the accuracy of the risk assessment methodology 
employed in our study. Furthermore, the spatial consistency between time since last burn 
and burned area maps with the final risk index zones underscores the reliability of the 
multicriteria approach in predicting fire-prone regions within the park.

To validate the susceptibility mapping, fire history data comprising 79 fire points were 
overlaid with the fire risk zones identified in the study. The analysis revealed that 70.9% 
of the fire points fell within high-risk zones, while 24.1% were located in moderate-risk 
zones. Only 5.1% of the fire points were observed in low-risk areas (Table 7).

This distribution aligns with the predicted fire susceptibility model, demonstrating its 
effectiveness in identifying high-risk zones. The strong correlation between historical fire 
occurrences and high-risk areas validates the robustness of the applied methodology and 
its utility in fire management and mitigation strategies.

Figure 3. Forest fire susceptibility parameters used in this study include (a) elevation, (b) slope, (c) aspect, (d) major 
fuel type distribution, (e) topographic wetness index (TWI), (f) Enhanced vegetation index (EVI), (g) distance to roads, 
and (h) distance to streams.

Table 7. Distribution of fire points across risk zones.

Risk zone Number of fire points Percentage of total fires (%)

High risk 56 70.9
Moderate risk 19 24.1
Low risk 4 5.1
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Figure 4. Spatial distribution of forest fire risk zones in the study area, categorised into very low, low, moderate, 
high, and very high risk. The map highlights a concentration of high and very high fire susceptibility zones primarily 
in the Eastern and South-Eastern regions, as well as in lower elevation areas with gentle slopes in the Southern and 
Northern parts.

Figure 5. Field photographs of fire patches identified in the study area, highlighting regions with a high risk of fire. 
The images illustrate the severity and spread of fire-prone zones, as determined by the study’s result.
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Figure 6. Time since last burns (monthly) map—depicting the temporal dynamics of fire occurrence and frequency 
across the studied landscape, providing critical insights for fire management and ecological monitoring.

Figure 7. Burned area map—visualising the extent and location of areas affected by past fires.
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In conclusion, the validation results presented in this research article validate the 
effectiveness of the GIS-based multicriteria technique in identifying forest fire-prone 
regions in Lamington National Park. The integration of field and satellite observations 
enhances the accuracy and reliability of our assessment, providing valuable insights for 
fire management and ecological conservation efforts in the park and contributing to the 
advancement of scientific knowledge in the field of fire ecology.

4.5. Comparison with advanced methods

While advanced machine learning models such as Random Forest and deep learning algo
rithms like U-Net have been applied in wildfire susceptibility studies, they often require exten
sive computational resources and lack interpretability for policy-making and on-ground 
implementation. In contrast, AHP offers a transparent and straightforward approach, particu
larly suitable for integrating field data with geospatial indices in regions where resources or 
computational capacity may be limited. Future studies could build upon this work by combin
ing AHP with machine learning models for enhanced accuracy and scalability.

5. Conclusion

The primary purpose of the study is to identify fire-affected forest stretches in the 
Lamington National Park, Queensland, Australia, using a multi-criteria analysis approach, 
specifically the AHP model, which facilitates the multi-source data combinations. The 
adopted methodology spatially analyses the 9 physical parameters, namely Surface slope (S), 

Figure 8. Fire history data overlaid on forest fire risk zone.
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Aspect (A), Elevation (E), Enhanced vegetation index (EVI), Topographic wetness index 
(TWI), Major fuel type (MFT), Distance to road (DR), Distance to stream (DS) and 
Distance to camping site (CS). After the application of the AHP model, the higher weights 
were assigned to Major fuel type. The raster calculation in GIS in the environment using 
assigned weights and risk level-wise rating score and post masking results to visualise fire- 
prone forest regions.

The present case study in Lamington National Park has revealed the Forest fire-prone 
areas. The results depicted that the forest fire reaches in the north and east of the 
Lamington National Park are susceptible to fire which is mainly governed by very dry 
and hot conditions.

In looking ahead, the outcomes of this study hold significant implications for future 
research directions and management approaches. Firstly, there is a pressing need for the 
refinement of methodologies utilised herein to bolster the precision and reliability of forest 
fire susceptibility mapping. This could involve integrating additional variables and employ
ing more advanced analytical techniques to enhance predictive capabilities. Secondly, incor
porating temporal analysis through the utilisation of time-series satellite imagery and 
historical climate data could offer deeper insights into the evolving nature of forest fire sus
ceptibility over time, thereby enabling the implementation of adaptive management strat
egies. Moreover, considering the escalating influence of climate change on fire regimes, 
future investigations should incorporate climate change projections to anticipate how shift
ing environmental conditions may alter susceptibility patterns. Concurrently, community 
engagement and education initiatives must be prioritised to empower local communities in 
fire-prone areas and foster a culture of fire prevention and preparedness. Furthermore, the 
identification of fire-prone areas underscores the importance of implementing targeted risk 
reduction measures such as prescribed burning and fuel management. These efforts should 
be integrated into broader landscape-scale planning and management frameworks to maxi
mise effectiveness and resilience. Lastly, continuous monitoring and evaluation are para
mount to assess the efficacy of management interventions and adapt strategies in response 
to changing conditions. By addressing these future implications, stakeholders can collabora
tively work towards enhancing wildfire management strategies, safeguarding ecosystems, and 
mitigating the impacts of wildfires on communities and biodiversity.

Future research could extend this work by incorporating machine learning or deep 
learning methods, such as Random Forest or U-Net, to compare and validate the AHP- 
derived fire risk index. Additionally, temporal analyses using time-series satellite imagery 
and dynamic environmental variables, such as real-time meteorological data, could pro
vide deeper insights into evolving fire susceptibility patterns. Integrating climate change 
projections could also enable the development of adaptive fire management strategies for 
subtropical ecosystems like Lamington National Park.
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