

Safety of alternative and renewable energy technologies

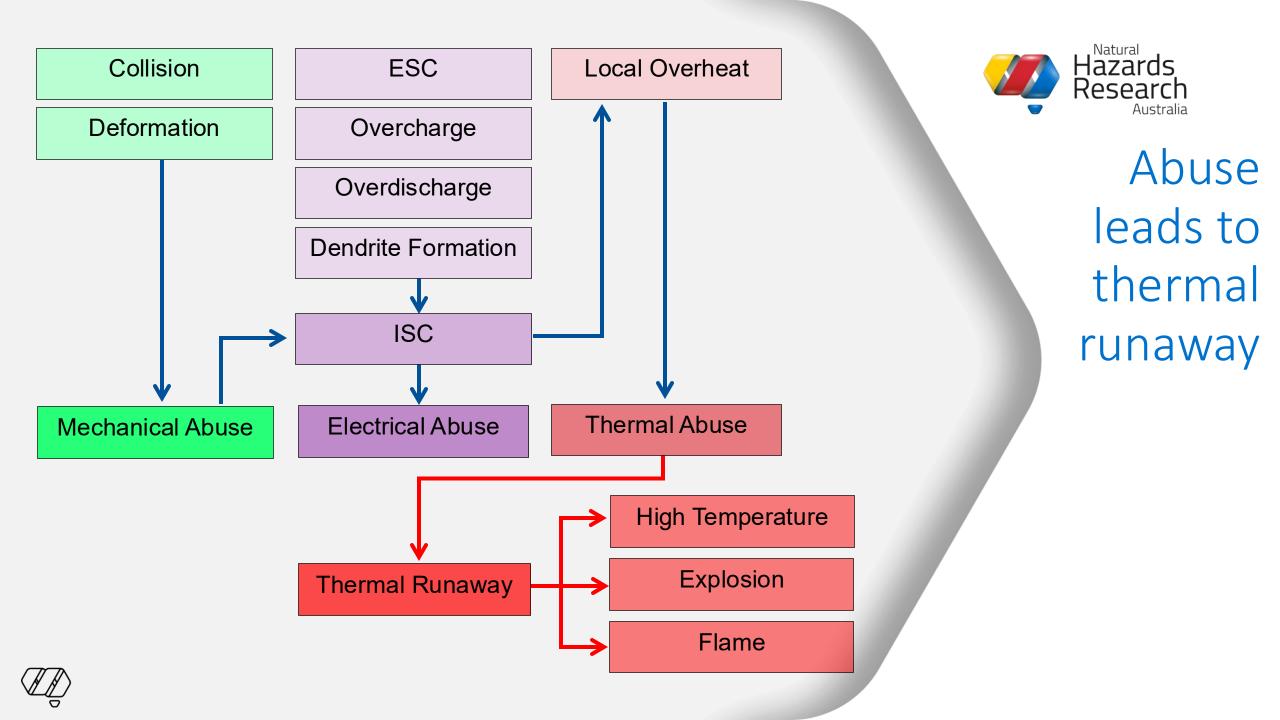
David Lange (speaker)

David Morrisset
Wenxuan Wu
Hons Wyn
Sergio Zarate
UQ Fire
The University of Queensland

Use cases

Shipping / transportation

- RO-RO
- Car transportersCar parks
- u/g, a/g, stackers
 Open road
 Closed road (tunnels)
 Offices
- End of Trip Facilities Homes
- Battery walls (second use)
- Single dwellings
- Apartment buildings
- Terraced units


Warehouses

 Automated storage and retrieval systems

Recycle / re-use Disposal

Consequences

https://www.abc.net.au/news/2022-03-02/felicity-ace-ship-with-luxury-cars-sinks-mid-atlantic/100876322

https://www.bbc.com/news/uk-england-hampshire-49071456

Shipping / transportation

- RO-RO
- Car transportersCar parks
- u/g, a/g, stackers
 Open road
 Closed road (tunnels)
 Offices
- End of Trip Facilities
 Homes
- Battery walls (second use)
- Single dwellings
- Apartment buildings
- Terraced units

Warehouses

 Automated storage and retrieval systems

Recycle / re-use Disposal

https://www.nytimes.com/2023/06/21/n yregion/e-bike-lithium-battery-firesnyc.html?login=email&auth=login-email

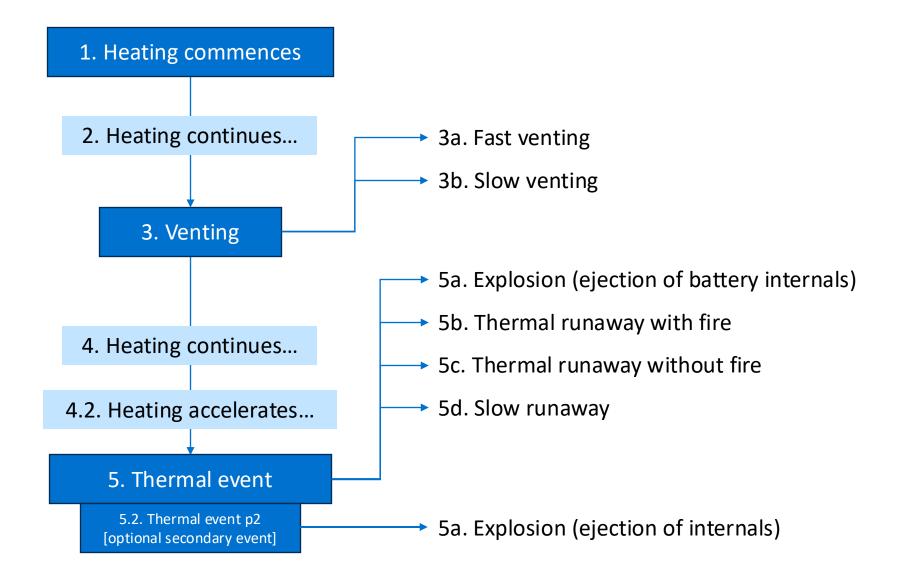
https://www.brisbanetimes.com.au/national/queensland/firefighter-injured-in-overnight-blaze-at-griffith-university-campus-20200316-p54aet.html

https://www.bbc.com/news/science-environment-63809620

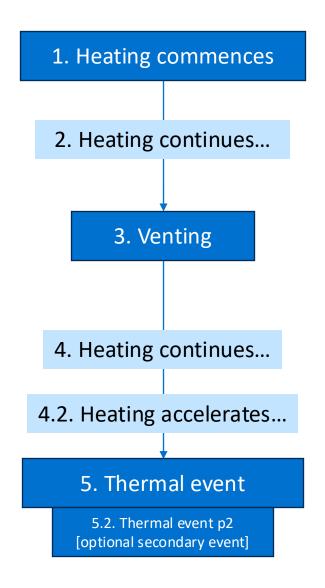
NHRA T4-A8

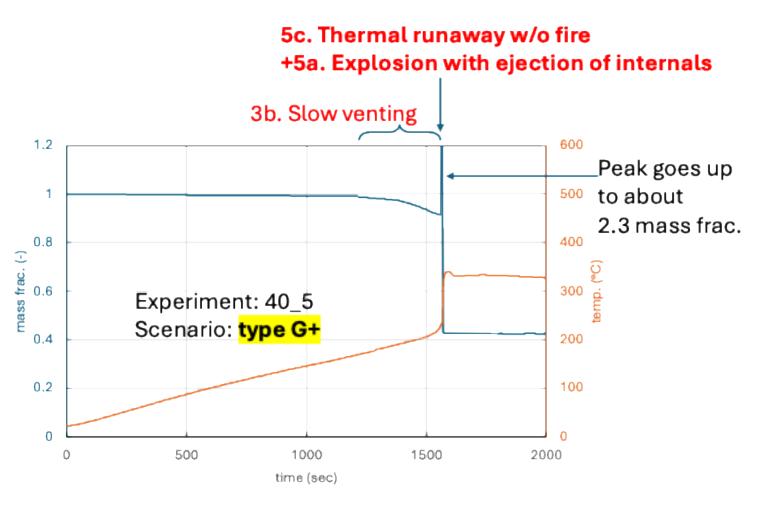
Work Package 4 of the FRNSW SARET project

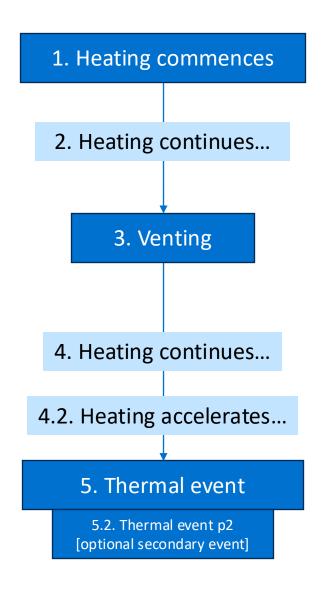
- Characterise the:
 - Physical
 - Environmental
 - Toxicological
- Consequences in Battery Energy Storage Systems


> Research > Find a project > Safety of altern

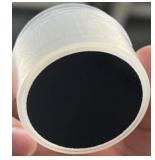
Safety of alternative renewable energy chnologies




Interpreting the differences

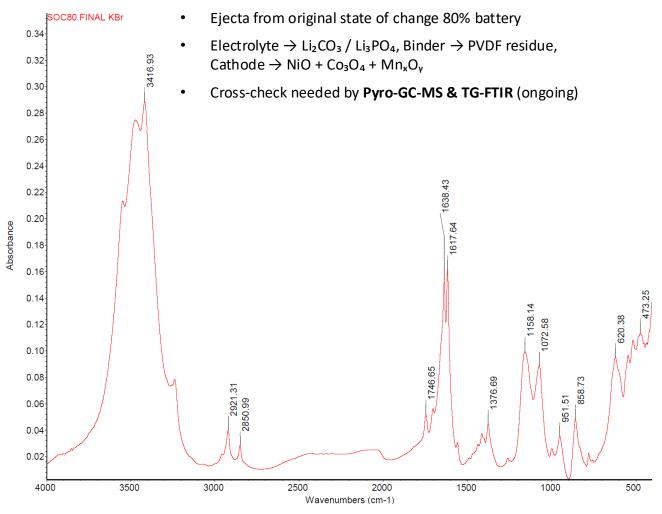

Interpreting the differences

Interpreting the differences



X-ray Fluorescence on Battery Solid Ejecta

Possible Origin



Ζ	Formula	Concentration	Line Name	Compound
28	Ni	34.3 %	Ni KA1	Nickel
25	Mn	12.2 %	Mn KA1	Manganese
13	Al	11.9 %	Al KA1	Aluminum
29	Cu	9.2 %	Cu KA1	Copper
27	Co	8.6 %	Co KA1	Cobalt
15	Р	0.9 %	P KA1	Phosphorus
20	Ca	0.4 %	Ca KA1	Calcium
17	C2H3CI	0.2 %	CI KA1	PVC
16	S	0.2 %	S KA1	Sulfur
14	Si	0.1 %	Si KA1	Silicon
40	Zr	0.1 %	Zr KA1	Zirconium
19	K	0.1 %	K KA1	Potassium
24	Cr	0.0 %	Cr KA1	Chromium
37	Rb	0.0 %	Rb KA1	Rubidium
38	Sr	0.0 %	Sr KA1	Strontium
35	Br	0.0 %	Br KA1	Bromine

Element(s)	Possible Origin	Relevant citation(s)**
Ni, Mn, Co	Active material of an (Nickel Manganese Cobalt) NMC (LiNi_xMn_yCo_zO₂) cathode → converts to NiO, Mn₃O₄, CoO after fire/thermal runaway	Rigaku WDXRF application note quantifies Ni/Co/Mn ratios in NMC cathodes Review of Ni-rich NMC chemistry XRF study of spent Li-ion batteries lists Ni, Mn, Co as top metals
Al	Al foil cathode current collector \rightarrow forms Al ₂ O ₃ /Al(OH) ₃ residues	Corrosion & role of Al current collectors in Li-ion cells
Cu	Cu foil anode current collector → oxidises to CuO/Cu₂O	Description of Cu foil as the standard anode current-collector
P (F not visible)	Electrolyte salt LiPF ₆ → hydrolyses/oxidises to Li _x PO_yF_z, Li₃PO₄, transition-metal phosphates	Thermal-decomposition pathway of LiPF ₆ & formation of phosphorus species
Cl	Electrolyte / cathode chlorination during high-T processing – several thermal-recycling and chlorination flowsheets deliberately convert Li₂O → LiCl to separate Li from transition metals	Thermal decomposition-based gas-solid reaction
S, Ca, Si, K, Zr (≤0.5 %)	Separator ash, electrolyte additives (e.g., Li₂SO₄, CaCO₃ filler, SiO₂ anti-shrink), Zr-based coatings	These low-level hetero-elements are commonly reported in battery-residue XRF scans alongside major metals
Li, F, etc. & C, H, O, N (Missing)	Light-element- limitation of XRF or EDX	Inductively Coupled Plasma Mass Spectrometry for Li, Al, B, Na, Mg, K, Fe, Cr, Zn, Mo, W, Sn, Sb, V, Ti, Cd, Pb, Tl, As, Se, P, and S Combustion Analysis for C, H, O, N

Fourier Transform Infrared Spectroscopy

Compound Inferred	Assignment Proposed
Li₂CO₃ (lithium carbonate)	Li ₂ CO ₃ always shows the strong doublet at 1490/1438 cm ⁻¹ and the 868–872 cm ⁻¹ bend; All three appear in exactly the correct ratio, so the match cannot be PVDF alone.
Li₃PO₄ / TM-phosphates	Stoichiometric phosphates give the two-lobe 1150/1050 cm ⁻¹ envelope plus a 590 cm ⁻¹ bend; the same trio is reported for Li ₃ PO ₄ formed from LiPF ₆ hydrolysis.
PVDF binder remnants	All three hallmark PVDF bands are visible, proving a trace of undecomposed binder. The 1180 cm ⁻¹ CF ₂ peak also explains the PO ₄ crest is slightly broadened.
NiO	Rock-salt NiO formed when Ni-rich NMC decomposes. Both IR-active NiO (620 cm ⁻¹) modes match literature positions.
Co₃O₄	Spinel Co₃O₄ shows a dominant band at 660 cm ⁻¹ with a weaker shoulder at 570 cm ⁻¹ ; both appear, confirming cobalt oxide in the ash.
Mn₃O₄ / MnO₂	Hausmannite Mn_3O_4 (and MnO_2) give $Mn-O$ stretches at 610–630 cm ⁻¹ and a second band near 500 cm ⁻¹ ; these fit the observed shoulders.

NHRA T4-A8

Work Package 4 of the FRNSW SARET project

- Development of representative energy storage systems
- Instrumentation design to characterise the risks to nearby or adjacent infrastructure, persons or environments
- Demonstration of different methods of initiating failure, in-line measurements of gas species, and residue analysis
- Desktop studies of extinguishing systems, fire effluent and contamination to run-off water, and risks associated with stranded energy
- Free burn tests as well as extinguishing tests

> Research > Find a project > Safety of alterr

Safety of alternative renewable energy chnologies

Thank you

d.lange@uq.edu.au d.morrisset@uq.edu.au

