We acknowledge the tradition of custodianship and law of the Country on which the University of Sydney campuses stand. We pay our respects to those who have cared and continue to care for Country.

Community Risk Assessment

15th May, 2024

Dr Nader Naderpajouh

Head of School of Project Management Associate Professor, Faculty of Engineering, Sydney Environment Institute The University of Sydney

Project Team

- → Sydney Environment Institute (SEI) The University of Sydney
 - A/Prof Nader Naderpajouh
 - Prof David Schlosberg
 - Dr Aaron Opdyke
 - A/Prof Floris Van Ogtrop
 - Prof Amanda Howard
 - A/Prof Hao Zhang
 - Dr Jodie Bailie
 - Dr Ali Hadigheh
 - Prof Mary Crock
 - A/Prof Petr Matous
 - Prof Willem Vervoort
 - Dr Ali Zolghadr
 - Peyman Habibi Moshfegh
 - Amir Pakizeh

- → New South Wales State Emergency Service (NSW-SES)
 - Sara Morgan
 - Melissa Cooper
- → Natural Hazard Research Australia
 - Dr Kat Haynes
 - Dr Rowena Morris

Significance

Practical significance

Need to change

- Agencies are at different stages of a moderate to significant revision of community risk assessment practices:
 - Incubation
 - Development
 - Implementation

Theoretical significance

Need to reflect complexities

- Multi-hazard scenarios
- Multi-stakeholder scenarios
- Dynamic scenarios
- Consideration of vulnerability and resilience

Systematic literature review

Quality check

Analysis and synthesis of the concepts

- "community risk assessment"
- 45 manuscripts

Community risk assessment

approach/methodology table

47 manuscripts

Empirical study: interviews with 29 individuals from a range of agencies and

298 manuscripts

- organisations across the country
- Exposure data
- Hazard data
- Vulnerability data
- Data for identified risk elements

Main Outputs

- → Guideline for development of community risk assessment
 - What are the range of potential approaches and their capabilities?
 - How can we innovate and do it differently?

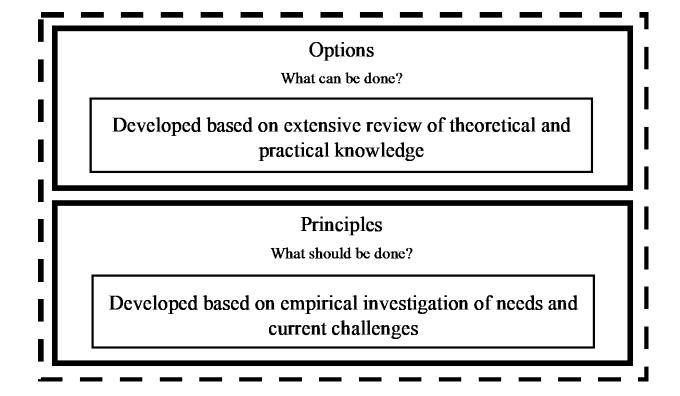


Table 1 Quantitative and semi-quantitative risk assessment methods

Ref	Disaster risk(s)	Definition of risk	Risk element assessment method and (output)					Risk assessment
			Hazard (H)	Exposure (E)	Vulnerability (V)	Other	Risk	approach
(Brink and Davidson, 2015)	Earthquake	R = f(H, V, RE)	Monte Carlo simulation with importance sampling (probabilistic ground motion maps)	-	Fragility analysis (fragility curves for building types)	Resilience (RE): Weighted sum (household socioeconomic resilience index)	Joint probability distribution (damage exceedance probability curves)	Hybrid: Statistical/index- based
(Cai et al., 2019)	Flood	R = f(H, V, E)	Hydrodynamic simulation (inundation depth, inundation area, and inundation duration)	GIS analysis (ground elevation, ground slope and impermeability)	GIS analysis (building density and point of interest density maps)	-	Fuzzy comprehensive evaluation (risk level map)	Hybrid: Index- based/simulation- based
(Guo et al., 2014)	Flood	R = f(H, E, V, RES)	Variable fuzzy set (VFS) theory set pair theory/GIS spatial analysis (Hazard level map)	Variable fuzzy set (VFS) theory/set pair theory/GIS spatial analysis (Exposure level map)	Variable fuzzy set (VFS) theory/set pair theory/GIS spatial analysis (Vulnerability level map)	Restorability: Variable fuzzy set (VFS) theory/set pair theory/GIS spatial analysis (Restorability level map)	Multiplication of exponentiated indicators (Risk level map)	Index-based
(Hizbaron et al., 2018)	Volcano	-	Pre-existing (volcano hazard maps)		Statistical and spatial analysis (Physical, social, economic, and total vulnerability maps)	• /		Index-based
(Jin et al., 2022)	Lightning	R = f(H, S, F)	GIS spatial analysis (lightning hazard level map)	GIS spatial analysis (frangibility level map)	See note	Sensitivity of the hazard-bearing environment GIS spatial analysis (Sensitivity level map)	Weighted sum of indicators (risk level map)	Index-based

Table 2 Example Hazard indicators used in the selected studies and corresponding sources of data

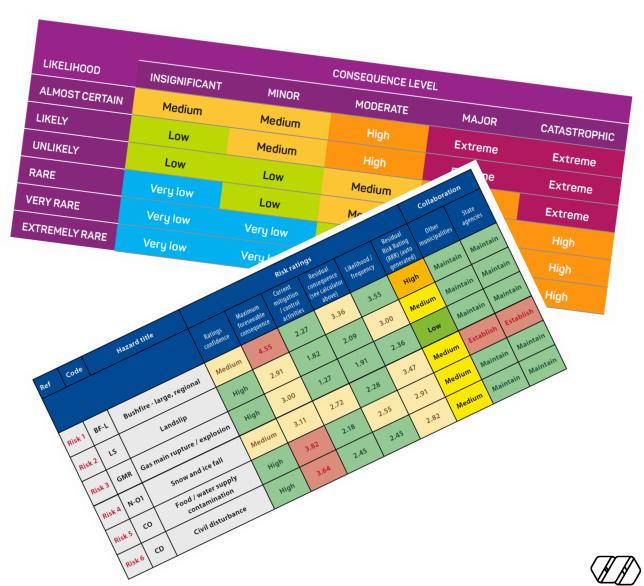
Disaster	Factors/indicators	Study: Data source
Flood	Annual	(Sun et al., 2022): National Meteorological Administration [China]
	precipitation	(Guo et al., 2014): China Meteorological Data Sharing Service Network during 1960–2009
		(Luo et al., 2020): Henan Water Resource Bulletin [China]
	Frequency of rainstorm	(Sun et al., 2022): National Meteorological Administration [China]
	Inundation depth	(Cai et al., 2019): Not specified; Internal to DigitalWater Simulation hydrodynamic model
	Inundation area	(Cai et al., 2019): Not specified; Internal to DigitalWater Simulation hydrodynamic model
	Inundation duration	(Cai et al., 2019): Not specified; Internal to DigitalWater Simulation hydrodynamic model
	Extreme precipitation event frequency	(Guo et al., 2014): China Meteorological Data Sharing Service Network during 1960–2009
	Drainage density	(Wu et al., 2015, Wu et al., 2017): Geospatial Data Cloud
	Slope	(Dwivedi et al., 2022): Remote sensing; Previous work
	Distance to river stream	(Dwivedi et al., 2022): Remote sensing; Previous work
	Landslide susceptibility	(Dwivedi et al., 2022): Remote sensing; Previous work
	Elevation	(Dwivedi et al., 2022): Remote sensing; Previous work
Earthquake	Earthquake ground motion intensity	(Brink and Davidson, 2015): Monte Carlo simulation with importance sampling on results of previous works
	Occurrence	(Brink and Davidson, 2015): Monte Carlo simulation with importance sampling on results of previous works
	probability	(Sarica et al., 2020): U.S. Geological Survey Database
	Magnitude of	(Pan et al., 2020): Santai County Statistical Yearbook; Santai County Statistical Bulletin; Random sampling
	Earthquake	to assess the local earthquake losses
	1	(Sherrill et al., 2022): Deterministic counterfactual scenario
	Peak ground	(Xia et al., 2022): China Earthquake Parameter Zoning Map
	acceleration	(Sarica et al., 2020): U.S. Geological Survey Database
		(Zhang et al., 2021): Earthquake Catalog; Tectonics and Geology data

Table 3 Exposure indicators used in the selected studies and corresponding sources of data

Disaster	Factors/indicators	Study: Data source
Flood	Urbanization rate	(Sun et al., 2022): Statistical Yearbook (China National Bureau of Statistics)
	Population density	(Sun et al., 2022): Statistical Yearbook (China National Bureau of Statistics)
		(Guo et al., 2014): Statistical Yearbook of Liaoning Province; Chinese macro data mining analysis system
		website
	Building density	(Sun et al., 2022): Statistical Yearbook (China National Bureau of Statistics)
	Economic density	(Sun et al., 2022): Statistical Yearbook (China National Bureau of Statistics)
	Ground elevation	(Cai et al., 2019): Not specified; Internal to DigitalWater Simulation hydrodynamic model
	Ground slope	(Cai et al., 2019): Not specified; Internal to DigitalWater Simulation hydrodynamic model
	Impermeability	(Cai et al., 2019): Not specified; Internal to DigitalWater Simulation hydrodynamic model
	Assets density	(Guo et al., 2014): Statistical Yearbook of Liaoning Province; Chinese macro data mining analysis system website
	Economy density	(Guo et al., 2014): Statistical Yearbook of Liaoning Province; Chinese macro data mining analysis system website
	Number/value of exposed properties	(Ming et al., 2022): National property database; Digimap service
Earthquake	Built-up area	(Sarica et al., 2020): Landsat TM images; digital elevation models (DEM); OpenStreetMap (OSM) data; land-use maps; local historical road network maps
	Population	(Xia et al., 2022): World pop project
	-	(Sherrill et al., 2022): Census data, employment data, proprietary insurance data, expert opinion, and tax
		records (Internal to Hazus model)
	Building inventory	(Zhang et al., 2021): Census data; statistical reports; field investigation
		(Sherrill et al., 2022): Census data, employment data, proprietary insurance data, expert opinion, and tax
		records (Internal to Hazus model)

Table 4 Vulnerability indicators used in the selected studies and corresponding sources of data

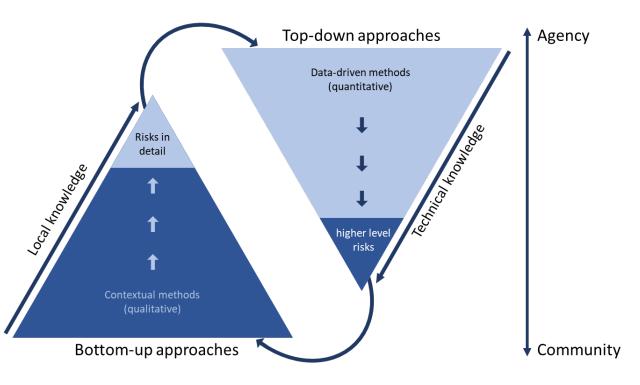
Disaster	Factors/indicators	Study: Data source	
Flood	Old and young population	(Sun et al., 2022): China Statistical Yearbook (China National Bureau of Statistics)	
	per unit area		
	Proportion of crop – sown	(Sun et al., 2022): China Statistical Yearbook (China National Bureau of Statistics)	
	area		
	Building density	(Cai et al., 2019): Not specified; Internal to DigitalWater Simulation hydrodynamic model	
	Points of interest density	(Cai et al., 2019): Baidu map	
	Proportion of male and	(Guo et al., 2014): Statistical Yearbook of Liaoning Province [China]; Chinese macro data mining	
	female	analysis system website	
	Education level	(Guo et al., 2014): Statistical Yearbook of Liaoning Province [China]; Chinese macro data mining	
		analysis system website	
	Proportion of industrial	(Guo et al., 2014): Statistical Yearbook of Liaoning Province [China]; Chinese macro data mining	
	electricity	analysis system website	
	Waterlogged farmland	(Guo et al., 2014): Statistical Yearbook of Liaoning Province [China]; Chinese macro data mining	
		analysis system website	
	Population	(Wu et al., 2015, Wu et al., 2017): Department of Comprehensive Statistics (National Bureau of Statistics	
		[China])	
	GDP	(Wu et al., 2015, Wu et al., 2017): Department of Comprehensive Statistics (National Bureau of Statistics	
		[China])	
	Sown area of farm crops	(Wu et al., 2015, Wu et al., 2017): Department of Comprehensive Statistics (National Bureau of Statistics	
		[China])	
Earthquake	Building fragility	(Brink and Davidson, 2015): Institut Teknologi Bandung; Geoscience Australia; Previous work	
		(Sherrill et al., 2022): Internal to Hazus model	
	Mortality rate	(Xia et al., 2022): Previous work	


Table 5 Indicators of other risk elements used in the selected studies and corresponding sources of data

Risk element	Disaster	Factors/indicators	Study: Data source
Emergency and recovery capabilities	Flood	Number of health technicians (per 10,000 people)	(Sun et al., 2022): Statistical Yearbook (China National Bureau of Statistics)
		Number of beds in medical institutions (per 10,000 people)	(Sun et al., 2022): Statistical Yearbook (China National Bureau of Statistics)
		Number of medical and health institutions	(Sun et al., 2022): Statistical Yearbook (China National Bureau of Statistics)
		GDP per capita	(Sun et al., 2022): Statistical Yearbook (China National Bureau of Statistics)
		Unemployment rate	(Sun et al., 2022): Statistical Yearbook (China National Bureau of Statistics)
Restorability	Flood	Density of road network	(Guo et al., 2014): Cold and Arid Regions Science Data Centre at Lanzhou; Database of Global Change Parameters (Chinese Academy of Sciences)
		The per capita medical person	(Guo et al., 2014): Statistical Yearbook of Liaoning Province; Chinese macro data mining analysis system website
		Per capita GDP	(Guo et al., 2014): Statistical Yearbook of Liaoning Province; Chinese macro data mining analysis system website
Household resilience	Earthquake	Income	(Brink and Davidson, 2015): Indonesian government statistics bureau household survey; damage survey data collected after the 2009 Padang earthquake
		Wealth	(Brink and Davidson, 2015): Indonesian government statistics bureau household survey; damage survey data collected after the 2009 Padang earthquake
		Individual fragility	(Brink and Davidson, 2015): Indonesian government statistics bureau household survey; damage survey data collected after the 2009 Padang earthquake
		Education	(Brink and Davidson, 2015): Indonesian government statistics bureau household survey; damage survey data collected after the 2009 Padang earthquake
		Household size	(Brink and Davidson, 2015): Indonesian government statistics bureau household survey; damage survey data collected after the 2009 Padang earthquake

Alternative approaches

- → Top-down
 - Statistical
 - Simulation based
 - Index based
- → Bottom-up
 - Focus groups and informant interviews
 - Hazard mapping
 - Seasonal calendar analysis
 - Transect walks


Integrated Approach

→ Bottom-up approach

 Based on input and engagement of local and Indigenous community including rich contextual understanding

→ Top-down approach

- Based on technical and scientific input and analysis
- → Integrating bottom-up and topdown community risk assessment
 - Complimenting data filling data gaps
 - Tailoring community responses
 - Validation and verification using community input

Challenges

Risk assessment data

- Availability, accessibility, and interoperability of data
- Data granularity
- Data privacy

Risk assessment models

- Modeling assumptions
- Quantification challenges
- Model limitations
- Multi-hazard scenarios
- Complexity of models
- Communication of the results of the models

Challenges

Risk assessment scale

- Aggregating small-scale analysis
- Discrepancies across the scales

Organisational governance

- Organisational structure, responsibilities, and ownership
- Centralisation versus flexibility
- Disjointed and uncoordinated risk assessment efforts
- Social, political, and financial influences on decision-making

Challenges

Community

- Values and priorities
- Perceptions
- Dynamic nature of communities
- Heterogeneity of communities
- Low uptake of community engagement campaigns

Resources

- Human resources
- Physical resources

Principles

Dr Nader Naderpajouh

Head of School of Project Management Associate Professor, Faculty of Engineering Sydney Environment Institute The University of Sydney

Twitter (X): @nadernnp

Email: nader.naderpajouh@sydney.edu.au

