

What makes a good fire simulator?

Embracing complexity and uncertainty

Caitlin Symon

Future Fire Analyst
The University of Melbourne

I recognise that we are meeting today on the traditional country of the Kaurna people and I pay my respect to their elders past and present as well as to First Nations people here today.

Sovereignty was never ceded.

What makes a good fire simulator?

Embracing complexity and uncertainty in situational awareness

What makes a good fire simulator?

Research team:

Primary Investigator - Hamish Clarke¹,

Co-investigators: Caitlin Symon¹, Timothy Neale ², Gabrielle Miller ², Alex Filkov¹, Kate Parkins¹, Erica Marshall¹, Trent Penman¹

University of Melbourne¹, Deakin University²

End users: Thomas Duff (CFA), Simon Heemstra (RFS), David Field (RFS), John Bally (AFAC)

NHRA Project Manager: George Goddard

Acknowledging there are things we **do not know** is just as important as piecing together everything we **do know**

Overview of today's talk

- 1. What is a fire simulator and how are we using them?
- 2. Why it is important to think about what makes a **good** fire simulator
- 3. How our research is helping to inform this challenge
- 4. Outcomes of our research
- 5. Implications of our findings for the development of fire simulators

What is a fire simulator and how are we using them?

What is a fire simulator and how are we using them?

- Imitations of real-world processes or systems
- Combines data and models to develop spatially and temporally explicit depictions of how fire behaves
- Helps build our knowledge of fire and to support-decision-making

Why it is important to think about what makes a **good** fire simulator

Why it is important to think about what makes a good fire simulator

- There are no agreed standards that simulators must meet to be 'fit for purpose'.
- We must question what it would look like for simulators to be functioning well and adding value to our work.

How our research is helping to inform this challenge

Key objectives

- → What it means to be 'fit-for-purpose'?
- → To build a picture of simulator users.
- → Ask whether we can develop a clear set of standards to be used by simulator developers.
- → Consider the issues, gaps and priorities around the next generation of fire simulators.

- → Literature review
- → Semi-structured interviews
- → Workshops
- → Questionnaire

- → Literature review
- → Semi-structured interviews
- → Workshops
- → Questionnaire

- → Literature review peer reviewed and grey literature evidence on, strengths, weaknesses and development priorities, drivers and effects of simulator use
- → Semi-structured interviews expert elicitation on current use; priorities; needs and gaps; additional contacts and literature
- → Workshops –expert elicitation, key criteria,

Literature review – use groups

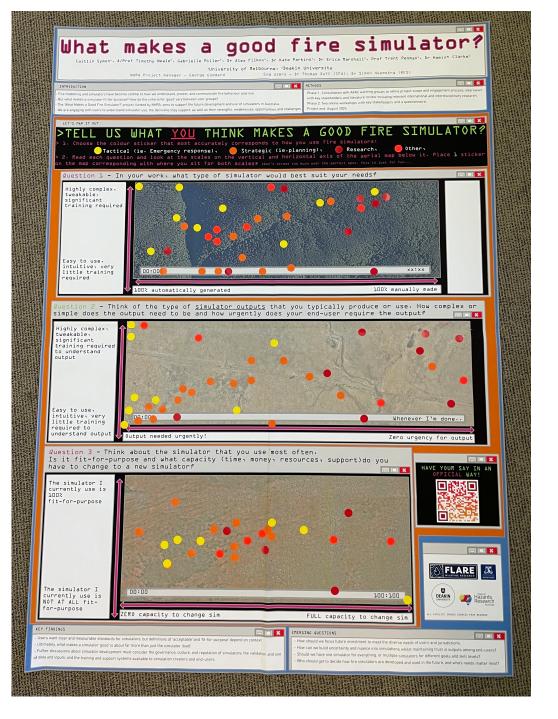
Tactical	Strategic	Research	Other
Tactical prediction (real-time)	Landscape risk assessment incl fuel mgmt & scenario analysis, readiness at various timescales	Research into tactical use cases	Community engagement
Tactical suppression	New estate siting and layout incl new settlements	Research into strategic use cases	Staff engagement
Back burning planning	Prescribed burning planning	Simulator evaluation	Scenario training
Public warnings	Scenario training	Understanding processes, Module development	
Smoke assessment		Fire spread reconstruction	
// Evaluation of effectiveness of interventions //Readiness		& evaluation of effectiveness of intervention, effort	

Literature review – Key criteria

Desirable criteria	Comments	
Easy to use	Includes graphical user interface	
Fast	Includes speed of specific processes (e.g. fire spread simulation) as well as end to end speed i.e. from data input to usable output	
Configurable	Users can tweak / tune / tailor parameters; Caters to users with different skill levels	
Validated	Includes performance for specific processes (e.g. spotting) or conditions (e.g. vegetation types, extreme weather) as well as overall performance; Refers also to nature of validation (e.g. identity and number of test fires)	
Good modelling framework	Able to run ensembles, explicitly consider uncertainty; Transparency (e.g. a preference for deterministic approaches over 'black boxes' and machine learning); Functional software platform; Open source software	
Good input process	Ease of preparation of inputs; Sensitivity to inputs	
Good outputs	A range of detailed spatial outputs; Outputs are easy to store and curate; Outputs can be audited	
Right scale	Fine spatial resolution; Large spatial coverage; Fine temporal extent; Long temporal coverage (e.g. multi-day fires, fire regime)	
Well supported	Access to training, education, technical support	
Good reputation	Awareness, familiarity; Respected by peers; Endorsed by agency; Trust in developers; Trust in underlying research	
Compatible	Compatible with agency systems; Compatible with agency programs and policy (e.g. risk horizons, baselines); Compatible with other models (e.g. loss and impact models, weather forecasts)	
Good price	Upfront and ongoing costs including computational resources	

- → Literature review peer reviewed and grey literature evidence on, strengths, weaknesses and development priorities, drivers and effects of simulator use
- → Semi-structured interviews expert elicitation on current use; priorities; needs and gaps; additional contacts and literature
- → Workshops —expert elicitation, key criteria

Interviews and workshops – key findings


- → People wanted standards but struggled to provide clear numbers.
- → Importance of broader simulator ecosystem.
- → It's complicated.

Next steps

- → Literature review
- → Semi-structured interviews
- → Workshops
- → Questionnaire

It's complicated

Implications of our findings for the development of fire simulators

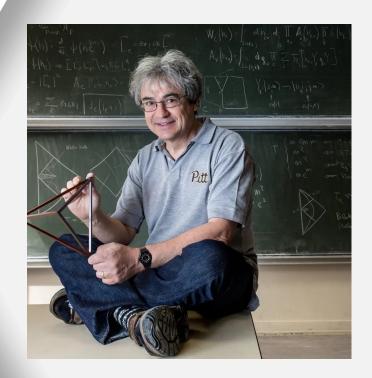
- Standards and benchmarks will be valuable.
- We must engage with and account for the complexity inherent in fire simulators.
- Can we develop a framework for engaging with this nuance?

Summary

- Fire simulators support knowledge building and decision-making
- They are complex and imperfect tools
- Our research is helping to create standards for future simulator development
- We must also begin to think of ways of engaging with their complexity and imperfection

Given that a good fire simulator is still never going to work 100% as we hope it would, how should this influence how we design and use them?

What does embracing complexity and uncertainty mean for how we relate to and manage fire?


Thank you!

"One of the greatest mistakes made by human beings is to want certainties when trying to understand something. The search for knowledge is not nourished by certainty: it is nourished by a radical absence of certainty. Thanks to the acute awareness of our ignorance, we are open to doubt and can continue to learn and to learn better."

Carlo Rovelli

